CH4

SECTION A

Total [12]

[1]

[1]

2. (a)

(i)

Sodium / potassium cyanide

- (ii) H₃c c [1]
- (iii) Sulfuric / hydrochloric acid [1]

(v) eg

(vi) LiAlH₄ / H₂ / sodium, ethanol [1] (vii) The nitrogen atoms act as electron pair donors / proton acceptors [1] (b) Molecular formula is C₄H₄O₂ [1] (i) (ii) 3 [1] C = C / alkene(iii) [1] Two of the (remaining) protons are in equivalent environments (and one is (iv) not) / there are CH and CH_2 present [1] (v) Possibilities

[3]

3. (a)

(b) Moles of calcium carbide = 500/64.1 = 7.80 (1)

Moles of ethyne = 7.80

Volume of ethyne = $7.80 \times 24.0 = 187 (dm^3)$ (1) [2]

(c) If the process is endothermic left to right then it needs to absorb energy

 hence the high temperature / endothermic reactions need a high temperature [1]

Curly arrows (1), full (1) and partial charges (1)

(f) Any two for (1) each

 energy costs / cost of catalyst / problems of separation of products /
 time taken / availability of starting materials / percentage yield /
 atom economy / relative health and safety
 [2]

(g)
$$C_6H_5 - C \equiv C - CH_2 - CH_3$$
 (1) C_1H_1 (1) [2]

(h) (i)

(ii) I sulfuric acid /
$$H_2SO_4$$
 / phosphoric acid / H_3PO_4 / AI_2O_3 [1]

II 3-hydroxypropanoic acid does not show a C = C absorption at **1620–1670** cm^{$$-1$$} but this is present in propenoic acid [1]

III The
$$CH_3 - C$$
 / $CH_3CH(OH)$ group is absent [1]

Total [16]

4.

(a)

(i)

(ii)

Substitution may occur in the ring at a different position (1) Addition may occur across the double bond (1)

 $c_{i} \longrightarrow \begin{pmatrix} H & c_{i} \\ -c_{i} & -c_{i} \\ H & H \end{pmatrix} = \begin{pmatrix} c_{i} \\ -c_{i} \\ -c_{i} \end{pmatrix} \begin{pmatrix} H \\ -c_{i} \\ -c_{i} \end{pmatrix}$ (1)

In both additions a secondary carbocation is formed therefore 'equal chances' / the energy for the formation of the carbocation is similar in both cases (1)

[2]

[1]

[3]

- (iii) 'acidified dichromate' / H^+ and $Cr_2O_7^{2-}$
- (iv) Although it contains a chiral centre (1) an equimolar / racemic mixture has been produced in the reaction (1) rotation is (externally) compensated (1)

Any 2 from 3

[2]

- QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter [1]
- LiAIH₄ / lithium tetrahydridoaluminate(III) / lithium aluminium hydride (1) Do not accept NaBH₄

[2]

- (b) (i) Gas bubbles / effervescence (1) Identifies carboxylic acid group (1) [2]
 - (ii) The bond between the ring and the chlorine atom is stronger than the aliphatic C–Cl bond or vice versa (1)
 This is due to interaction between a lone pair of electrons on the chlorine atom and the ring electrons (1)
- (c) Compound 1 cannot give the m/z fragment value 77 $(C_6H_5^+)$ (1) Compound 2 has a chiral centre (1)
 - Compound 3 is rapidly hydrolysed by water / has a chiral centre (1)

Possible correct answers

[4]

QWC Legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning [1]

Total [20]

5. (a) Number of moles of nitrogen = 1.00/23.2 = 0.0431(1)thus number of moles of the amine is also 0.0431 M_r of the amine = mass / number of moles = 2.54 / 0.0431 = 58.9 (1) $R - NH_2 \longrightarrow$ 58.9 16.02 \therefore R = '43' \therefore Formula is CH₃CH₂CH₂NH₂ or (CH₃)₂CHNH₂ (1) [3] (b) (i) An electron deficient species that seeks out an electron rich / negatively charged / δ - site in a molecule [1] (ii) 3-methylphenylamine [1] (iii) These types of group are called **chromophores** / azo (1) and are responsible for the production of colour in compounds as found in azo-dyes (1) [2] Nucleophilic addition and elimination / condensation (1) (c) (i) The products are orange/ red/ yellow (1) [2] R_f values 2.5 / 7.2 = 0.35 and 3.5 / 7.2 = 0.49 (1) (ii) Ketones are propanone and pentan-2-one (1) Alkene W is $CH_3 - C = C - CH_2 - CH_2 - CH_3$ $\begin{vmatrix} & \\ & \\ & \\ & \\ & CH_3 & CH_3 \end{vmatrix}$ (1)The name is 2,3-dimethylhex-2-ene (1) [4] QWC Information organised clearly and coherently, using specialist vocabulary where appropriate [1] The equation / information shows that R and R^1 are different alkyl groups. (iii) 2-methyl-3-ethylpent-2-ene has both R and R¹ as ethyl groups [1] $CH_3COOH + CH_3CH_2OH \rightarrow CH_3COOCH_2CH_3 + H_2O$ (d) (i) [1] Mass of ethanoic acid = $0.45 \times 60 = 27$ g (ii) [1] (iii) There is no indication of the time necessary to reflux the mixture / method of heating / mention of dangers from fire [1] It acts as a catalyst / dehydrating agent / necessary to remove water / (iv) move the position of equilibrium to the right [1] (v) To react with (any remaining) ethanoic acid [1]

Total [20]

PMT