CH4
 SECTION A

1. (a) .blue \qquad (1) \qquad higher (1) \qquad .higher (1)
(b) (i)

accept $\mathrm{C}_{6} \mathrm{H}_{5}$ in place of the ring accept equations that show the catalyst
(ii) It acts as a halogen carrier / it helps produce the electrophile/ $\mathrm{CH}_{3}{ }^{+}$ / increases polarity of the halogenoalkane
(c) There are 6 methyl protons and 4 aromatic protons, hence a ratio of 3:2 (1) All the methyl protons are equivalent as are all the aromatic protons (1)
(d) (i) Any 2 from NMR / HPLC / GC / refractive index / mass spectra / boiling temperature
(ii)

(e) (i)

(ii) protein / dipeptide / polypeptide
2.

(a) (i) Sodium / potassium cyanide
(ii)

(iii) Sulfuric / hydrochloric acid
(iv)

(v) eg

(vi) $\mathrm{LiAlH}_{4} / \mathrm{H}_{2} /$ sodium, ethanol
(vii) The nitrogen atoms act as electron pair donors / proton acceptors
(b) (i) Molecular formula is $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{2}$
(ii) 3
(iii) $\mathrm{C}=\mathrm{C} /$ alkene
(iv) Two of the (remaining) protons are in equivalent environments (and one is not) / there are CH and CH_{2} present
(v) Possibilities

OR

[1]
3.
(a)

(b) Moles of calcium carbide $=500 / 64.1=7.80$

Moles of ethyne $=7.80$
Volume of ethyne $=7.80 \times 24.0=187\left(\mathrm{dm}^{3}\right)$
(c) If the process is endothermic left to right then it needs to absorb energy

- hence the high temperature / endothermic reactions need a high temperature
(d)

(e)

Curly arrows (1), full (1) and partial charges (1)
(f) Any two for (1) each
energy costs / cost of catalyst / problems of separation of products / time taken / availability of starting materials / percentage yield / atom economy / relative health and safety
(g) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \quad$ (1) $\quad \mathrm{C}_{1} \mathrm{H}_{1} \quad$ (1)
[2]
(h) (i)

(ii) I sulfuric acid $/ \mathrm{H}_{2} \mathrm{SO}_{4} /$ phosphoric acid $/ \mathrm{H}_{3} \mathrm{PO}_{4} / \mathrm{Al}_{2} \mathrm{O}_{3}$

II 3-hydroxypropanoic acid does not show a C = C absorption at $1620-1670 \mathrm{~cm}^{-1}$ but this is present in propenoic acid

III The $\mathrm{CH}_{3}-\mathrm{C}^{\circ}$ / $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})$ group is absent
4.
(a) (i) Substitution may occur in the ring at a different position

Addition may occur across the double bond

(ii)

In both additions a secondary carbocation is formed therefore 'equal chances' /
the energy for the formation of the carbocation is similar in both cases (1)
(iii) 'acidified dichromate' $/ \mathrm{H}^{+}$and $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
(iv) Although it contains a chiral centre (1) an equimolar / racemic mixture has been produced in the reaction (1) rotation is (externally) compensated (1)

Any 2 from 3
QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter
(v) LiAlH_{4} / lithium tetrahydridoaluminate(III) / lithium aluminium hydride (1) Do not accept NaBH_{4}

(b) (i) Gas bubbles / effervescence (1) Identifies carboxylic acid group (1)
(ii) The bond between the ring and the chlorine atom is stronger than the aliphatic $\mathrm{C}-\mathrm{Cl}$ bond or vice versa (1) This is due to interaction between a lone pair of electrons on the chlorine atom and the ring electrons (1)
(c) Compound 1 cannot give the m / z fragment value $77\left(\mathrm{C}_{6} \mathrm{H}_{5}^{+}\right)$

Compound 2 has a chiral centre
Compound 3 is rapidly hydrolysed by water / has a chiral centre

Possible correct answers

QWC Legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning
5. (a) Number of moles of nitrogen $=1.00 / 23.2=0.0431$ thus number of moles of the amine is also 0.0431
M_{r} of the amine $=$ mass $/$ number of moles $=2.54 / 0.0431=58.9$

$16.02 \therefore R=$ '43' \therefore Formula is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ or $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{2}$
(b) (i) An electron deficient species that seeks out an electron rich / negatively charged / δ - site in a molecule
(ii) 3-methylphenylamine
(iii) These types of group are called chromophores / azo (1) and are responsible for the production of colour in compounds as found in azo-dyes (1)
(c) (i) Nucleophilic addition and elimination / condensation The products are orange/ red/ yellow (1)
(ii) R_{f} values $2.5 / 7.2=0.35$ and $3.5 / 7.2=0.49$ (1)

Ketones are propanone and pentan-2-one (1)
Alkene \mathbf{W} is

The name is 2,3 -dimethylhex-2-ene (1)
QWC Information organised clearly and coherently, using specialist vocabulary where appropriate
(iii) The equation / information shows that R and R^{1} are different alkyl groups.

2-methyl-3-ethylpent-2-ene has both R and R^{1} as ethyl groups
(d) (i) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}$
(ii) Mass of ethanoic acid $=0.45 \times 60=27 \mathrm{~g}$
(iii) There is no indication of the time necessary to reflux the mixture / method of heating / mention of dangers from fire
(iv) It acts as a catalyst / dehydrating agent / necessary to remove water / move the position of equilibrium to the right
(v) To react with (any remaining) ethanoic acid

